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Abstract In the present paper, we will study the solution stability of parametric
variational conditions

0 ∈ f (µ, x)+ NK(λ)(x),

where M and � are topological spaces, f : M × Rn → Rn is a function, K : � → 2Rn
is

a multifunction and NK(λ)(x) is the value at x of the normal cone operator associated
with the set K(λ). By using the degree theory and the natural map we show that under
certain conditions, the solution map of the problem is lower semicontinuous with
respect to parameters (µ, λ). Our results are different versions of Robinson’s results
[15] and proved directly without the homeomorphic result between the solution sets.

Keywords Solution stability · Parametric variational conditions · Variational
inequality · Degree theory · Lower semicontinuity.

1 Introduction

One of the most important areas of nonsmooth analysis is the study of stability to
perturbation of the solutions to parameterized problems. Since many first-order con-
ditions for optimality can be expressed in the form of variational conditions, there are
much interest in solution stability to parametric variational conditions.
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Let us assume that M and� are topological spaces, f : M × Rn → Rn be a function
and K : � → 2Rn

be a multifunction. The variational conditions involving the set K(λ)
and the function f (µ, ·) is the problem of finding x = x(µ, λ) satisfying

0 ∈ f (µ, x)+ NK(λ)(x), (1)

where NK(λ)(x) is the value at x of the normal-cone operator associated with the set
K(λ) and (µ, λ) ∈ M ×� are parameters. When the multifunction K is convex valued,
(1) is called a parametric variational inequality. We will denote by S(µ, λ) the solution
set of the problem (1) corresponding to (µ, λ). Let S(µ0, λ0) be a solution set of (1)
corresponding to (µo, λ0) ∈ �×� that is, if x0 ∈ S(µ0, λ0) then

0 ∈ f (µ0, x0)+ NK(λ0)(x0). (2)

Our main concern is to investigate the behavior of S(µ, λ) when (µ, λ) vary around
(µ0, λ0). This problem interested many authors in the last two decades. For the rel-
evant literature of the problem we will review briefly some papers that have a close
connection with the present work.

Robinson [17] gave an excellent survey of work on the stability of generalized
equation by proving the implicit-function theorems. These results can be interpreted
in terms of the stability to perturbations, in µ, of the equation

0 ∈ f (µ, x)+ G(x).

In [17], Robinson showed that if f has a strong approximation then the solution map
is Lipschitz and directional differentiable.

By using the metric projection method of Dafermos [2], Yen [19] obtained a the-
orem on Hölder continuity of the solution to a parametric variational inequalities in
Hilbert spaces for strongly monotone operators. The result was extend by Demokos
[4] to the case of variational inequalities in reflexive Banach spaces, where the solution
set is a singleton.

Levy and Rockafellar [9], Levy and Mordukhovich [11] consider parametric vari-
ational inequalities with parameters in both f and K. However, their stability results
concentrate on computing the proto-derivative and coderivative of the solution sets
with respect to parameters, though which one can obtain such properties as Lipschitz
continuity or the Aubin condition.

Recently, Robinson [15] (see also Ref. [16]) has introduced a localized version of the
so-called normal maps to study solution existence and solution stability of variational
inequalities. Based on the normal map and the degree-theoretic method, Robinson
has established a result on the solution stability of the variational conditions in finite
dimensional space. This is an important result on the solution stability of variational
conditions for the cases of nonconvex sets.

Before restating Robinson’s results in Ref. [15] we will recall some notions and
events of the degree theory which used by Ref. [15] for the establishment of results
on the solution stability of variational conditions. The notions and events of the degree
theory can be found in Refs. [1,3,6,7,12,20].

Let� be an open bounded set in Rn. We denote by ∂� the boundary of� and� the
closure of �. Let C1(�) = C1(�) ∩ C(�), where C1(�) is the set of all continuously
differentiable functions φ : � → Rn and C(�) is the set of all continuous functions on
�.

For each φ ∈ C(�) we put ‖φ‖ = maxx∈� ‖φ(x)‖.
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We will denote by dist(x, A) the distance form a point x ∈ Rn to a set A ⊂ Rn.
If φ ∈ C1(�), Jφ(x) = det(gradφ(x)) and Zφ = {x ∈ � : Jφ(x) = 0} which is called

the crease of φ.
It is well known that if φ ∈ C1(�) and p /∈ φ(Zφ) then the set φ−1(p) is finite (see,

for instance [12, Theorem 1.1.2]).

Definition 1.1 (a) Let φ ∈ C1(�) and p /∈ φ(Zφ) ∪ φ(∂�). The degree of φ at p with
respect to � is defined by

deg(φ,�, p) :=
∑

x∈φ−1(p)

sgn(Jφ(x)). (3)

(b) Let φ ∈ C1(�) and p /∈ φ(∂�) such that p ∈ φ(Zφ). We define the degree of φ at
p with respect to � is the number deg(φ,�, q) for any q /∈ φ(Zφ) ∪ φ(∂�) such that
|p − q| < dist(p,φ(∂�)).
(c) Let φ ∈ C(�) and p ∈ Rn\φ(∂�). We define deg(φ,�, p), the degree of φ at p
with respect to �, to be deg(ψ ,�, p) for any ψ ∈ C1(�) such that |ψ(x) − φ(x)| <
dist(p,φ(∂�)) for all x ∈ �.

The following list summarizes some properties most frequently used.

Theorem 1.1 Suppose that φ ∈ C(�) and p /∈ φ(∂�). Then the following properties
hold:

(a) (Normalization) If p ∈ D then deg(I, D, p) = 1, where I is the identity mapping.
(b) (Existence) If deg(φ, D, p) �= 0 then there is x ∈ D such that φ(x) = p.
(c) (Additivity) Suppose that D1 and D2 are disjoint open sets of D. If p /∈ φ(D\(D1 ∪

D2) then
deg(D, f , p) = deg(φ, D1, p)+ deg(φ, D2, p).

(d) (Homotopy invariance) Suppose that H : [0, 1] × D → Rn is continuous. If p /∈
H(t, ∂D) for all t ∈ [0, 1] then deg(H(t, .), D, p) is independent of t.

(e) (Excision) If D0 is a closed set of D and p /∈ φ(D0) then deg(φ, D, p) =
deg(φ, D\D0, p).

Here are some particular notational conventions used in the sequel. If S is a mul-
tifunction from a space X to a space Y, then the set �S := {(x, y) ∈ X × Y : y ∈ S(x)}
is called the graph of S. Let y0 ∈ S(x0) and W be a neighborhood of (x0, y0). The
localization of S to W is the multifunction SW whose graph is �S ∩ W. We recall that
the multifunction S is called lower semicontinuous at x ∈ X if for any open set V of
Y such that S(x)∩ V �= Ø, there exists a neighborhood U of x satisfying S(x)∩ V �= Ø
for all x ∈ U.

The following theorem is a main result in Ref. [15].

Theorem 1.2 ([15], Theorem 3.2) Let X be an open subset of Rn and U be a topological
space. Suppose that f is a continuous function from U × X to Rn and K is a continuous
multifunction from U to Rn.
Let X0 ⊂ X, U0 ⊂ U and Z0 ⊂ Rn be neighborhoods of x0, u0 and z0 := x0 − f (u0, x0)

respectively. Let ξ : U0 × X0 → Rn be a function defined by ξ(u, x) = x − f (u, x).
Assume that:

(i) the localization to (U0 × Z0)× X0 of the multifunction taking (u, z) ∈ U0 × X0
to (I + NK(u))

−1(z) ∈ Rn is a single-valued, continuous function π ;
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(ii) there exists an open neighborhood Z1 ⊂ Z0 of z0 = x0 − f (u0, x0) such that z0
is the unique solution of fπ (u0, z) = 0 in Z1 and

deg(fπ (u0, .), Z1, 0) �= 0,

where fπ : U0 × Z0 → Rn defined by fπ (u, z) = f (u,π(u, z))+ z − π(u, z).

Let X1 = ξ−1(Z1) and define multifunctions Ẑ : U0 → Z1, X̂ : U0 → X1 by

Ẑ(u) = {z ∈ Z0 | π(u, z) ∈ X0, fπ (u, z) = 0} ∩ Z1,

X̂(u) = {x ∈ X0 | ξ(u, x) ∈ Z0, 0 ∈ f (u, x)+ NK(u)(x)} ∩ X1.

Then Ẑ(u0) = {z0}, X̂(u0) = {x0} and the multifunctions Ẑ and X̂ are lower semicon-
tinuous at u0.

As it was mentioned, Theorem 1.2 was proved by using the normal map and a result
on the homeomorphism between the solution set of variational inequalities and the
solution set of the normal map. These tools played a key role in arguments of Ref. [15].
From this and the degree-theoretic method, he drew fairly strong conclusion on the
existence and continuity of solution of perturbed problems when the unperturbed
problem satisfy certain regularity requirements. However, the hypothesis of Theorem
1.2 which posed on the normal map fπ is not easy to check and in principle the solution
set X̂(u) could be smaller than the original solution set.

One may ask whether these conditions can be relaxed and the normal map method
can be replaced?

In the present paper, we wish to give different versions of Theorem 1.2 by other
approach, that is the natural map. Namely, we will show that under certain conditions
which are posed on the so-called natural map and the metric projection, the solution
map of parametric variational inequalities is lower semicontinuous. In order to obtain
such a result we will have to use some facts of the degree theory and the method
which was employed in Ref. [15] as well as the structure of the natural map.

It is noted that our results were proved directly without using the homeomorphic
result between the solution set of a variational inequality and the solution set of the
normal map. Besides, the conditions posed on the natural map, in some circumstances,
are easy to verify and manipulate. For this we will give an illustrative example of our
results at the end of the paper.

2 Main results

In this section, we will establish some result on the lower semicontiuity of the solution
map of problem (1).

We now return to problem (1) to study properties of the perturbed variational
conditions defined by the set K(λ) and the map f (µ, ·), namely,

0 ∈ f (µ, x)+ NK(λ)(x), (4)

where NK(λ)(x) is the value at x of the normal-cone operator associated with the set
K(λ). We assume throughout the paper that the sets K(λ) are Clarke regular at point
x, at which we can compute the normal cone, so that we have

NK(λ)(x) = {x∗ ∈ Rn | 〈x∗, y − x〉 ≤ o(‖y − x‖) ∀y ∈ K(λ)}.
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Let S(µ, λ) be the solution set of (4) corresponding to parameters (µ, λ) and x0 be a
solution of (4) corresponding to (µ0, λ0) ∈ M ×�, that is x0 ∈ S(µ0, λ0). Put

π(λ, x) = (
I + NK(λ)

)−1
(x)

and
Fρ(µ, λ, x) = x − π(λ, x − ρf (µ, x)),

where ρ > 0. In case ρ = 1 we put

F(µ, λ, x) = x − π(λ, x − f (µ, x)).

It is easily seen that, for each fixed (µ, λ) ∈ M ×�, x is a solution of (4) if and only if

0 ∈ Fρ(µ, λ, x). (5)

Moreover, if K(λ) has convex values then (4) becomes a parametric variational
inequality and we have

Fρ(µ, λ, x) = x −�K(λ)(x − ρf (µ, x)),

F(µ, λ, x) = x −�K(λ)(x − f (µ, x)).

Here �K(λ)(z) is the metric projection of z onto K(λ). The later is called the natural
map (see [5], p. 83).

The following theorem gives a sufficient condition for the lower semicontinuity of
the solution map of (4).

Theorem 2.1 Let X0, M0 and �0 be neighborhoods of x0, µ0 and λ0 respectively. Let
f be a continuous function from M0 × X0 to Rn and K be a multifunction from �0 to
Rn. Assume that:

(i) there exists a open neighborhood Z0 of z0 = x0 − f (µ0, x0) such that the local-
ization to (�0 × Z0) × X0 of the multifunction taking (λ, z) ∈ �0 × Z0 to (I +
NK(λ))

−1(z) is a single-valued, continuous function π ;
(ii) there exist an open bounded neighborhood X1 ⊆ X0 of x0 such that x0 is the

unique solution of F(µ0, λ0, x) = 0 in X1 and deg(F(µ0, λ0, .), X1, 0) �= 0.

Then there exist a neighborhood M1 of µ0, a neighborhood �1 of λ0 and an open
bounded neighborhood � of x0 such that the following assertions are fulfilled:

(a) Ŝ(µ, λ) := S(µ, λ)∩� is nonempty for every (µ, λ) ∈ M1×�1 and Ŝ(µ0, λ0) = {x0};
(b) Ŝ is lower semicontinuous at (µ0, λ0).

Before proving the theorem we give some comparisons between Theorem 1.2 and
Theorem 2.1. In our theorem, the continuity of multifunction K is not required while
this hypothesis was necessary in the proof of Theorem 1.2. Condition (i) of Theo-
rem 1.2 is the same as condition (i) of Theorem 2.1. They require the existence of
neighborhoods X0 and Z0 of x0 and z0 := x0 − f (µ0, x0) so that the localization of
[I + NK(λ)]−1(·) to X0 × Z0 is single and continuous. However, condition (ii) of Theo-
rem 2.1 is somewhat different from condition (ii) of Theorem 1.2. In Theorem 2.1, this
condition is posed on the natural map but in Theorem 1.2 it is posed on the normal
map. In order to verify condition (ii) of Theorem 1.2 we first have to establish the
formula of fπ then we compute deg(fπ , Z1, 0). Meanwhile, condition (ii) of Theorem
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2.1 is checked by computing the degree d(F, X1, 0). In some circumstances, this ver-
ification may be easier because the formula of F is often simpler than the formula
of fπ .

Proof of Theorem 2.1 We will use some techniques from [15] and the structure of the
natural map to give a direct proof.

Since x0−f (µ0, x0) ∈ Z0, by the continuity of f , there exist a neighborhood X2 ⊂ X0
of x0, a neighborhood M′

0 ⊂ M0 ofµ0 such that x−f (µ, x) ∈ Z0 for all (µ, x) ∈ M′
0×X2.

By (i), F is single and continuous on M′
0 ×�0 × X2.

Choose an open bounded neighborhood� of x0 such that� ⊂ X1 ∩X2. By excising
X1\�, we have from (e) of Theorem 1.1 that

deg(F(µ0, λ0, .),�, 0) = deg(F(µ0, λ0, .), X1, 0) �= 0. (6)

Moreover, for any ω ∈ ∂� we have F(µ0, λ0,ω) �= 0. This implies that there exists a
δω > 0 such that 0 /∈ B(F(µ0, λ0,ω), δω) := Bω. By the continuity of F(·, ·, ·) there exist
a neighborhood Uω ⊂ M′

0 of µ0, a neighborhood �ω ⊂ �0 of λ0 and a neighborhood
Qω of ω such that F(µ, λ, z) ∈ Bω for all (µ, λ, z) ∈ Uω × �ω × Qω. Since ∂� is
compact and ∂� ⊂ ∪Qω, there are some ω1,ω2, . . . ,ωn such that ∂� ⊂ ∪n

i=1Qωi . Put
M1 = ∩n

i=1Uωi ,�1 = ∩n
i=1�ωi ; we shall show that M1,�1 and� satisfy the conclusion

of the theorem. In fact, we fix any (µ, λ) ∈ M1 × �1. For z ∈ � and t ∈ [0, 1] we
consider a homotopy pt(z) = (1 − t)F(µ0, λ0, z) + tF(µ, λ, z). Choose any z ∈ ∂�;
then z ∈ Qωi for some i and hence (µ, λ) ∈ Uωi × �ωi . By the convexity of Bωi ,
pt(z) = (1 − t)F(µ0, λ0, z) + tF(µ, λ, z) ∈ Bωi . Hence pt(z) �= 0. This means that
0 /∈ pt(∂�). By (d) of Theorem 1.1 we have

degF(µ, λ, ·),�, 0) = deg(F(µ0, λ0, ·),�, 0) �= 0.

By (b) of Theorem 1.1, there exists x = x(µ, λ) ∈ � such that F(µ, λ, x(µ, λ)) = 0.
Hence S(µ, λ) ∩� �= Ø for all (µ, λ) ∈ M1 ×�1. Moreover, by (ii) we get S(µ0, λ0) ∩
� = {x0}.

It remains to prove (b). Suppose that V is an open such that Ŝ(µ0, λ0)∩V �= Ø. Sine
Ŝ(µ0, λ0) = {x0}, x0 ∈ V. By the boundedness of �, the set G := V ∩ � is bounded
and open. By excising �\G, we obtain from (e) of Theorem 1.1 that

degF(µ0, λ0, ·),�, 0) = degF(µ0, λ0, ·), G, 0) �= 0. (7)

For any ω ∈ ∂G we have F(µ0, λ0,ω) �= 0. Hence there exists a θω > 0 such that
0 /∈ B(F(µ0, λ0,ω), θω) := B′

ω. By the continuity of F(·, ·, ·) there exist a neighborhood
U′
ω ⊂ U1 of µ0, a neighborhood�′

ω ⊂ �1 of λ0 and a neighborhood Q′
ω of ω such that

F(µ, λ, z) ∈ B′
ω for all (µ, λ, z) ∈ U′

ω×�′
ω×Q′

ω. Note that ∂G is compact. Hence there
are some ω1,ω2, . . . ,ωn such that ∂G ⊂ ∪n

i=1Q′
ωi

. Put U2 = ∩n
i=1U′

ωi
, �2 = ∩n

i=1�
′
ωi

.
By the similar argument as the proof of part (a) and using (7) we can show that

deg(F(µ, λ, ·), G, 0) = degF(µ0, λ0, ·), G, 0) �= 0

for all (µ, λ) ∈ U2 ×�2. According to (b) of Theorem 1.1, there exists x = x(µ, λ) ∈ G
such that F(µ, λ, x) = 0. This means that

S(µ, λ) ∩ G = Ŝ(µ, λ) ∩ V �= Ø

for all (µ, λ) ∈ U2 × �2. Hence Ŝ is lower semicontinuous at (µ0, λ0). The proof is
complete. �
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The following theorem is another version of Theorem 1.2 and Theorem 2.1 with
modified conditions.

Theorem 2.2 Let X0, M0 and �0 be neighborhoods of x0, µ0 and λ0 respectively. Let
f be a continuous function from M0 × X0 to Rn and K : �0 → 2Rn

be a multifunction.
Assume that:

(i) there exists a open neighborhood Z0 of x0 such that the localization to (�0 ×
Z0)× X0 of the multifunction taking (λ, z) ∈ �0 × Z0 to (I + NK(λ))

−1(z) is a
single-valued, continuous function π ;

(ii) there exist an open bounded neighborhood X1 ⊆ X0 of x0 and ρ0 >

0 such that x0 is the unique solution of Fρ(µ0, λ0, x) = 0 in X1 and
deg(Fρ(µ0, λ0, .), X1, 0) �= 0 for all ρ ∈ (0, ρ0].

Then there exist a neighborhood M1 of µ0, a neighborhood �1 of λ0 and an open
bounded neighborhood � of x0 such that the following assertions are fulfilled:

(a) Ŝ(µ, λ) := S(µ, λ)∩� is nonempty for every (µ, λ) ∈ M1×�1 and Ŝ(µ0, λ0) = {x0};
(b) Ŝ is lower semicontinuous at (µ0, λ0).

Proof Choose ρ ∈ (0, ρ0] such that x0 − ρf (µ0, x0) ∈ Z0. By the continuity of f ,
there exist a neighborhood X2 ⊂ X0 of x0, a neighborhood M′

0 ⊂ M0 of µ0 such
that x − ρf (µ, x) ∈ Z0 for all (µ, x) ∈ M′

0 × X2. Consider Fρ(µ, λ, x) with (µ, λ, x) ∈
M′

0 ×�0 × X2. By (i), Fρ(·, ·, ·) is single and continuous on M′
0 ×�0 × X2. Choose an

open bounded neighborhood � of x0 such that � ⊂ X1 ∩ X2. By excising X1\�, we
have from (e) of Theorem 1.1 and (ii) that

deg(Fρ(µ0, λ0, .),�, 0) = deg(Fρ(µ0, λ0, .), X1, 0) �= 0. (8)

We now apply arguments in the proof of Theorem 2.1 again, with F replaced by Fρ ,
to obtain the desired conclusion. �

In the above theorem, although condition (ii) is heavier than the previous con-
dition, condition (i) has been relaxed. In many cases, for examples, if multifunction
K is either pseudo-Lipschitz or prox-regular with compatible parametrization (see
definitions below) then condition (i) of Theorem 2.2 is satisfied while condition (i) of
Theorem 1.2 and Theorem 2.1 are not fulfilled in general.

So far, we have provided general results about solution stability of perturbed var-
iational conditions, but in order to apply them one needs to verify their hypotheses.
One of them is the localization of (I + NK(λ))

−1 is a single, continuous map. For this
requirement, we will give a class of sets K(λ) so that condition (i) of Theorem 2.2
is fulfilled. We cite below some notion and properties of sets which are prox-regular
with compatible parametrization (see, for instance [14,15,18]).

Definition 2.1 Let x0 ∈ K(λ0) and v0 ∈ NK(λ0). The sets K(λ) is said to be prox-regular
in x at x0 for v0 with compatible parametrization by λ at λ0 if there exist neighborhoods
U0, V0 and X0 of λ0, v0 and x0, respectively, with ρ ≥ 0 such that

〈v, x′ − x〉 − (ρ/2)‖x′ − x‖2 ≤ 0

whenever (x, λ, v) ∈ X0 × U0 × V0, x ∈ K(λ), x′ ∈ X0 ∩ K(λ) and v ∈ NK(λ)(x).

Actually, the above definition requires that the indicator function iK(λ) of K(λ), is
prox-regular in x at x0 for v0 with compatible parametrization by λ at λ0 in the term
of Ref. [10].
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The next theorem provides information on the properties of the projector on a
prox-regular set that also satisfies condition (i) of Theorem 2.2.

Theorem 2.3 ([14], Corollary 4 ) Let X and U be open set of Rn and Rm respectively,
and let K be a multifuction from U to Rn that is continuous on U. Let x0 be a point of
X and λ0 of U such that x0 ∈ K(λ0). Let v0 = 0 and suppose that K(·) is prox-regular
in x at x0 for 0 with compatible parametrization by λ at λ0. Then for each real number
β > 1 there exist an open neighborhood U0 of λ0, a closed neighborhood X0 of x0
and a neighborhood Z0 of z0 := x0, such that the localization to (U0 × Z0) × X0 of
the multifunction taking (λ, z) ∈ U0 × Z0 to (I + NK(λ))

−1(z) is a single, continuous
function π that coincides with the localization to (U0 × Z0)× X0 of the multifunction
taking (λ, z) ∈ U0 × Z0 to metric projection �K(λ)(z).

It is noted that, although Theorem 2.3 can be applied to Theorem 2.2 so that condition
(i) is satisfied, Theorem 2.3 may be not applicable to condition (i) of Theorem 1.2. The
reason is that, Z0 in Theorem 2.3 is a neighborhood of x0 but Theorem 1.2 requires
that Z0 is a neighborhood of z0 := x0 − f (µ0, x0). Moreover, if K is pseudo-Lipschitz
then condition (i) of Theorem 2.2 is automatically fulfilled. This explains why in some
circumstances the conditions of Theorem 2.2 are easy to verify.

Recall that the multifunction K is said to be pseudo-Lipschitz at (λ0, x0) ∈ GraphK
if there exist a neighborhood V of λ0, a neighborhood W of x0 and a constant k > 0
such that

K(λ) ∩ W ⊂ K(λ′)+ k‖λ− λ′‖B(0, 1) ∀λ, λ′ ∈ � ∩ V.

In this case we have the following result.

Theorem 2.4 Let M0 ⊂ Rm and �0 ⊂ Rk be neighborhoods of µ0 and λ0 respectively.
Let X0 ⊂ Rn be a closed convex neighborhood of x0, f : M0 ×X0 → Rn be a continuous
function and K : �0 → 2Rn

be a multifunction with closed convex values. Assume that:

(i) the multifunction K is pseudo-Lipschitz at (λ0, x0);
(ii) there exists an open bounded neighborhood X1 of x0 and ρ0 > 0 such that x0 is

the unique solution of Fρ(µ0, λ0, x) = 0 in X1 and deg(Fρ(µ0, λ0, .), X1, 0) �= 0
for all ρ ∈ (0, ρ0], where Fρ is defined by

Fρ(µ, λ, x) = x −�K(λ)∩X0(x − ρf (µ, x))

for (µ, λ, x) ∈ M0 ×�0 × X0.
Then there exist a neighborhood M1 of µ0, a neighborhood �1 of λ0 and an open
bounded neighborhood � of x0 such that the following assertions are fulfilled:

(a) Ŝ(µ, λ) := S(µ, λ)∩� is nonempty for every (µ, λ) ∈ M1 ×�1 and Ŝ(µ0, λ0) = {x0};
(b) Ŝ is lower semicontinuous at (µ0, λ0).

Proof We first notice that, since K is convex valued, (4) becomes a parametric varia-
tional inequality.

According to Lemma 1.1 in Ref. [19] (see also Ref. [8]), it follows from (i) that there
exist a neighborhood �′

0 ⊂ �0 of λ0, a neighborhood Z0 ⊂ X0 of x0 and a constant
k0 > 0 such that

‖�K(λ)∩X0(z)−�K(λ′)∩X0(z)‖ ≤ k0‖λ− λ′‖1/2



J Glob Optim (2007) 39:101–111 109

for all λ, λ′ ∈ �′
0 and z ∈ Z0. Let π(λ, z) = �K(λ)∩X0(z). For any z, z′ ∈ Z0 and

λ, λ′ ∈ �′
0 we have

‖π(λ, z)− π(λ′, z′)‖ = ‖�K(λ)∩X0(z)−�K(λ′)∩X0(z
′)‖

≤ ‖�K(λ)∩X0(z)−�K(λ)∩X0(z
′)‖+‖�K(λ)∩X0(z

′)−�K(λ′)∩X0(z
′)‖

≤ ‖z − z′‖ + k0‖λ− λ‖ 1
2 .

Consequently,π : �′
0×Z0 → X0 is uniformly continuous on�′

0×Z0. Chose ρ ∈ (0, ρ0]
such that x0 − ρf (µ0, x0) ∈ Z0. By the continuity of f , there exists a neighborhood M′

0
of µ0, a neighborhood X2 of x0 such that x − ρf (µ, x) ∈ Z0 for all (µ, x) ∈ M′

0 × X2.
We now consider Fρ which is defined by

Fρ(µ, λ, x) = x −�K(λ)∩X0(x − ρf (µ, x0))

for (µ, λ, x) ∈ M′
0 ×�′

0 ×X2. By the above, Fρ is continuous on M′
0 ×�′

0 ×X2. Choose
a bounded open neighborhood� of x0 such that� ⊂ X1 ∩ X2. Then� is contained in
the interior of X0. By using the arguments as in the proof of Theorem 2.1 for Fρ and
�, we show that there exist a neighborhood M1 of µ0, a neighborhood �1 of λ0 so
that for each (µ, λ) ∈ M1 ×�1, the equation Fρ(µ, λ, x) = 0 has a solution x(µ, λ) in
�. As x(µ, λ) belongs to the interior of X0, x(µ, λ) is a solution of (4). We now apply
arguments in the proof of Theorem 2.1 again to obtain the desired conclusion. �

To end we give an illustrative example below.

Example 2.1 Let M0 = [−2, 2] ⊂ R,�0 = [−1, 2] ⊂ R and X0 = R2. Let f: M0×R2 →
R2 defined by

f (µ, x) = (x2
1 + µx2, x1), x = (x1, x2)

and K : �0 → 2R2
defined by

K(λ) = {(x1, x2) : 2x1 − x2 ≤ 4, x1 + x2 = 2λ}. (9)

Put (µ0, λ0) = (0, 1), x0 = (1, 1) and X1 = B(x0, 1). Then we have the following
assertion:

(a) x0 = (1, 1) and x′
0 = (0, 2) are solutions of (4) at (µ0, λ0);

(b) conditions (i) and (ii) of Theorem 2.2 are satisfied;
(c) there exists an open bounded neighborhood � of x0 such that the solution map

Ŝ(·) = S(·) ∩� is lower semicontinuous at (µ0, λ0).

In fact, we have f (µ0, x) = (x2
1, x1) and

K(λ0) = {(x1, x2) : 2x1 − x2 ≤ 4; x1 + x2 = 2}.
Hence for every x = (x1, x2) ∈ K(λ0) we get

〈f (µ0, x0), x − x0〉 = 〈(1, 1), (x1 − 1, x2 − 1)〉 = x1 + x2 − 2 = 0.

Consequently, x0 is a solution of (4) at (µ0, λ0). Similarly, we also have x′
0 = (0, 2) is a

solution of (4) at (µ0, λ0).
Since K(·) is convex valued and is Lipschitz continuous (see, for instance [13]),

condition (i) of Theorem 2.2 and condition (i) of Theorem 2.4 are fulfilled. Here
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we can choose Z0 = B(x0,
√

2). It remains to show that x0 is the unique solution of
Fρ(µ0, λ0, x) = 0 in X1 and deg(Fρ(µ0, λ0, .), X1, 0) �= 0 for all ρ > 0. We have

Fρ(µ0, λ0, x) = (x1, x2)−�K(λ0)∩X0 [(x1, x2)− ρf (µ0, (x1, x2))]
= (x1, x2)−�K(λ0)∩X0(x1 − ρx2

1, x2 − ρx1)

= (x1, x2)− (1 + 1
2
(x1 − x2 − ρx2

1 + ρx1), 1 − 1
2
(x1 − x2 − ρx2

1 + ρx1)

=
(

1
2
(x1 + ρx2

1 − ρx1 + x2)− 1,
1
2
(x1 − ρx2

1 + ρx1 + x2)− 1
)

.

Hence Fρ(µ0, λ0, x) = 0 if and only if
{

x1 + ρx2
1 − ρx1 + x2 = 2

x1 − ρx2
1 + ρx1 + x2 = 2.

The above system gives two solutions (1, 1) and (0, 2). It is obvious that x0 = (1, 1) is
the unique solution of the equation Fρ(µ0, λ0, x) = 0 in X1.

We now compute the degree deg(Fρ(µ0, λ0, .), X1, 0). Since

JFρ =
∣∣∣∣

1
2 (1 − ρ + 2ρx1)

1
2

1
2 (1 + ρ − 2ρx1)

1
2

∣∣∣∣ ,

it yields JFρ (x0) = ρ
2 > 0. Hence deg(Fρ(µ0, λ0, ·), X1, 0) = 1.

Let M1 = (− 1
28 , 1

28 ) and �1 = ( 3
4 , 5

4 ). Then for each (µ, λ) ∈ M1 ×�1 we have

Fρ(µ, λ, x) = 1
2
((1 −ρ)x1 +ρx2

1 + (1 +µρ)x2 − 2λ, (1 +ρ)x1 −ρx2
1 + (1 −µρ)x2 − 2λ).

Hence Fρ(µ, λ, x) = 0 if and only if
{
(1 − ρ)x1 + ρx2

1 + (1 + µρ)x2 = 2λ
(1 + ρ)x1 − ρx2

1 + (1 − µρ)x2 = 2λ.

This system gives two solutions
(

x0
1, x0

2

)
= 1

2

(
1 + µ+

√
(1 + µ)2 − 8µλ, 4λ− 1 − µ−

√
(1 + µ)2 − 8µλ

)

and
(
x′

1, x′
2
) = 1

2

(
1 + µ−

√
(1 + µ)2 − 8µλ, 4λ− 1 − µ+

√
(1 + µ)2 − 8µλ

)
.

Note that (1 + µ)2 − 8µλ > 0 for all (µ, λ) ∈ M1 × �1. Thus we obtain S(µ, λ) =
{(x0

1, x0
2), (x

′
1, x′

1)}. Putting x(µ, λ) = (x0
1, x0

2) we get

lim
(µ,λ)→(0,1)

x(µ, λ) = (1, 1) = x0.

Choosing � = X1 we have Ŝ(µ0, λ0) = S(µ0, λ0) ∩ � = {x0}. Moreover, Ŝ(µ, λ) is
lower semicontinuous at (µ0, λ0).

We notice that Theorem 1.2 cannot apply to our example. In fact, we have z0 =
x0 − f (µ0, x0) = (0, 0). Hence for any ε > 0, B(z0, ε) � B(x0,

√
2). This implies that

the set Z1 in Theorem 1.2, is not contained in Z0. Consequently, conditions (i) and (ii)
of Theorem 1.2 are invalid. �
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